Biometric bits extraction through phase quantization based on feature level fusion
نویسندگان
چکیده
Biometric bits extraction has emerged as an essential technique for the study of biometric template protection as well as biometric cryptosystems. In this paper, we present a non-invertible but revocable bits extraction technique by means of quantizing the facial data from two feature extractors in the phase domain, which we coin as aligned feature-level fusion phase quantization (AFPQ). In this technique, we utilize helper data to achieve the revocability requirement of bits extraction. The feature averaging and remainder normalization technique are integrated with the helper data to reduce feature variance within the same individual and increase the distinctiveness of bit strings of different individuals to achieve good recognition performance. A scenario in which the system is compromised by an adversary is also considered. As a generic technique, AFPQ can be easily extended to multiple different biometric modalities.
منابع مشابه
Disguised Face Recognition by Using Local Phase Quantization and Singular Value Decomposition
Disguised face recognition is a major challenge in the field of face recognition which has been taken less attention. Therefore, in this paper a disguised face recognition algorithm based on Local Phase Quantization (LPQ) method and Singular Value Decomposition (SVD) is presented which deals with two main challenges. The first challenge is when an individual intentionally alters the appearance ...
متن کاملBinary Biometric Representation through Pairwise Polar Quantization
Binary biometric representations have great significance for data compression and template protection. In this paper, we introduce pairwise polar quantization. Furthermore, aiming to optimize the discrimination between the genuine Hamming distance (GHD) and the imposter Hamming distance (IHD), we propose two feature pairing strategies: the long-short (LS) strategy for phase quantization, as wel...
متن کاملImproved Feature Processing for Iris Biometric Authentication System
Iris-based biometric authentication is gaining importance in recent times. Iris biometric processing however, is a complex process and computationally very expensive. In the overall processing of iris biometric in an iris-based biometric authentication system, feature processing is an important task. In feature processing, we extract iris features, which are ultimately used in matching. Since t...
متن کاملK-means Based Multimodal Biometric Authentication Using Fingerprint and Finger Knuckle Print with Feature Level Fusion
In general, identification and verification are done by passwords, pin number, etc., which are easily cracked by others. To overcome this issue, biometrics has been introduced as a unique tool to authenticate an individual person. Biometric is a quantity which consists of individual physical characteristics that provide more authentication and security than the password, pin number, etc. Nevert...
متن کاملK-Nearest Neighbor Classification Approach for Face and Fingerprint at Feature Level Fusion
Biometric system that based on single biometric called uni-modal biometrics usually suffers from problems like imposter's attack or hacking, unacceptable error rate and low performance. So the need of using multimodal biometric system arises in such cases. The aim of this paper is to study the fusion at feature extraction level for face and fingerprint. The proposed system fuses the two tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Telecommunication Systems
دوره 47 شماره
صفحات -
تاریخ انتشار 2011